ON THE UNIT DOT PRODUCT GRAPH OF A COMMUTATIVE RING

Correction:
Theorem $6.1(1,2,3)$ and Theorem $6.2(1,2,3)$: The set D is a dominating set and it is minimum in the sense that if F is another dominating set and F is a subset of D, then $D=F$. However, we cannot claim that D is a minimum dominating set. So the given dominating number Igamma need not be true.

Theorem 6.1 (4) and Theorem 6.2 (4): The results are OK .
by

Mohammad Ahmad Abdulla

A Thesis Presented to the Faculty of the
American University of Sharjah
College of Arts and Sciences
in Partial Fulfillment
of the Requirements for the Degree of

Master of Science in
Mathematics

Sharjah, United Arab Emirates
January 2016
(c) 2016 Mohammad Abdulla. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master's Thesis of Mohammad Ahmad Abdulla.
Thesis Title: On The Unit Dot Product Graph Of A Commutative Ring.

Signature

Dr. Ayman Badawi
Professor
Thesis Advisor

Dr. Faruk Uygul
Assistant Professor
Thesis Committee Member

Dr. Taher Abualrub
Professor
Thesis Committee Member

Dr. Hana Sulieman
Head of Mathematics

Dr. James Griffin
CAS Graduate Programs Director

Dr. Mahmoud Anabtawi
Dean of CAS

[^0]
Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Ayman Badawi, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing research. I also would like to thank my committee Dr. Faruk Uygul and Dr. Taher Abualrub for patiently guiding my research and helping me to develop my background. Many thanks to mathematics department and friends. Special thanks goes to my parents. They were always supporting me and encouraging me with their best wishes.

Abstract

In 2015, Ayman Badawi (Badawi, 2015) introduced the dot product graph associated to a commutative ring A. Let A be a commutative ring with nonzero identity, $1 \leq n<\infty$ be an integer, and $R=A \times A \times \cdots \times A$ (n times). We recall from (Badawi, 2015) that total dot product graph of R is the (undirected) graph $T D(R)$ with vertices $R^{*}=R \backslash\{(0,0, \ldots, 0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y=0 \in A$ (where $x \cdot y$ denote the normal dot product of x and $y)$. Let $Z(R)$ denotes the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph $Z D(R)$ of $T D(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{(0,0, \ldots, 0)\}$. Let $U(R)$ denotes the set of all units of R. Then the unit dot product graph of R is the induced subgraph $U D(R)$ of $T D(R)$ with vertices $U(R)$. Let $n \geq 2$ and $A=Z_{n}$. The main goal of this thesis is to study the structure of $U D(R=A \times A)$.

Search Terms: Total dot product graphs, zero dot product graphs, dominating sets, domination number.

Table of Contents

Abstract 5
List of Figures 7
CHAPTER 1 Introduction 8
CHAPTER 2 The Structure of $U D(R=A \times A)$ When A Is a Field 11
CHAPTER 3 Unit Dot Product Graph of $R=Z_{n} \times Z_{n}$ 16
CHAPTER 4 Subgraphs of the Zero-Divisor Dot Product Graph of $Z_{n} \times Z_{n}$ 22
CHAPTER 5 Equivalence Dot Product Graph 23
CHAPTER $6 \quad$ Domination Numbers of $T D(R), Z D(R)$, and $U D(R)$ 27
CHAPTER 7 Conclusion and Future Work 32
References 33
Vita 35

List of Figures

Figure 2.1 The unit dot product graph of the $\operatorname{ring} A \times A$, where A is a field with 4 elements 14
Figure 2.2 The unit dot product graph of the ring $Z_{5} \times Z_{5}$ 15
Figure 3.1 The unit dot product graph of the ring $Z_{8} \times Z_{8}$. 20
Figure 3.2 The unit dot product graph of the ring $Z_{10} \times Z_{10}$ 21
Figure 5.1 The equivalence unit dot product graph of the ring $Z_{20} \times Z_{20} 26$
Figure 5.2 The equivalence unit dot product graph of the ring $Z_{34} \times Z_{34} 26$

1. Introduction

Let R be a commutative ring with $1 \neq 0$. Then $Z(R)$ denotes the set of zero-divisors of R and the group of units of R will be denoted by $U(R)$. As usual Z_{n}, denotes the ring of integers modulo n. The nonzero elements of $S \subseteq R$ will be denoted by S^{*}. Over the past several years, there has been considerable attention in the literature to associating graphs with commutative rings (and other algebraic structures) and studying the interplay between ring-theoretic and graph-theoretic properties; see the recent survey articles (D. Anderson, Axtell, \& Stickles, 2010) and (H. Maimani, Pouranki, Tehranian, \& Yassemi, 2011). For example, as in (D.F. \& Livingston, 1999), the zero-divisor graph of R is the (simple) graph $\Gamma(R)$ with vertices $Z(R) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. This concept is due to Beck (Beck, 1988), who let all the elements of R be vertices and was mainly interested in colorings. The zero-divisor graph of a ring R has been studied extensively by many authors, for example see((Akbari, Maimani, \& Yassemi, 2003)-(D. D. Anderson \& Naseer, 1993), (D. Anderson \& Badawi, 2008a), (Axtel, Coykendall, \& Stickles, 2005)(Axtel \& Stickles, 2006), (Chiang-Hsieh, Smith, \& Wang, 2010)-(DeMeyer, Greve, Sabbaghi, \& Wang, 2010), (H. R. Maimani, Pournaki, \& Yassemi, 2006)-(Smith, 2007), (Wickham, 2008)). We recall from (D. Anderson \& Badawi, 2008b), the total graph of R, denoted by $T(\Gamma(R)$) is the (undirected) graph with all elements of R as vertices, and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x+y \in Z(R)$. The total graph (as in (D. Anderson \& Badawi, 2008b)) has been investigated in (Akbari, Kiani, Mohammadi, \& Moradi, 2009), (Akbari, Jamaali, \& Seyed Fakhari, 2009), (Akbari, Aryapoor, \& Jamaali, 2012), (?, ?), (H. Maimani et al., 2011), (H. Maimani, Wickham, \& Yassemi, 2012), (Pucanović \& Petrović, 2011), (Chelvam \& Asir, 2013c) and (Shekarriz, Shiradareh Haghighi,
\& Sharif, 2012); and several variants of the total graph have been studied in (Abbasi \& Habib, July 2001), (D. Anderson \& Badawi, 2012), (D. Anderson \& Badawi, 2013), (D. Anderson, Fasteen, \& LaGrange, 2012), (Atani \& Habibi, 2011), (Barati, Khashyarmanesh, Mohammadi, \& Nafar, 2012), (Chelvam \& Asir, 2013b), (Chelvam \& Asir, 2011), (Chelvam \& Asir, 2012), (?, ?), (Chelvam \& Asir, 2013a), and (Khashyarmanesh \& Khorsandi, 2012). Let $a \in Z(R)$ and let $a n n_{R}(a)=\{r \in R \mid r a=0\}$. In 2014, Badawi (Badawi, 2014) introduced the annihilator graph of R. We recall from (Badawi, 2014) that the annihilator graph of R is the (undirected) graph $A G(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if $a n n_{R}(x y) \neq a n n_{R}(x) \cup a n n_{R}(y)$. It follows that each edge (path) of the classical zero-divisor of R is an edge (path) of $A G(R)$. For Further investigations of $A G(R)$, see (Afkhami, Khashyarmanesh, \& Sakhdari, 2015), and (Visweswaran \& Patel, 2014).

In 2015, Badawi (Badawi, 2015) introduced the dot product graph associated to a commutative ring A. Let A be a commutative ring with nonzero identity, $1 \leq n<\infty$ be an integer, and $R=A \times A \times \cdots \times A$ (n times). We recall from [1] that total dot product graph of R is the (undirected) graph $T D(R)$ with vertices $R^{*}=R \backslash\{(0,0, \ldots, 0)\}$, and two distinct vertices x and y are adjacent if and only if $x \cdot y=0 \in A$ (where $x \cdot y$ denote the normal dot product of x and $y)$. Let $Z(R)$ denotes the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph $Z D(R)$ of $T D(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{(0,0, \ldots, 0)\}$. Let $U(R)$ denotes the set of all units of R. Then the unit dot product graph of R is the induced subgraph $U D(R)$ of $T D(R)$ with vertices $U(R)$. Let $n \geq 2$ and $A=Z_{n}$. The main goal of this thesis is to study the structure of $U D(R=A \times A)$. Let G be a graph with V as its set of vertices. We recall that a subset $S \subseteq V$ is called a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality among the dominating sets of G. If $A=Z_{n}$
and $R=Z_{n} \times \cdots \times Z_{n}$ (m times, where $m<\infty$), then the domination numbers of $T D(R)$ and $Z D(R)$ are determined. Furthermore, the domination number of $U D\left(Z_{n} \times Z_{n}\right)$ is determined.

Let G be a graph. Two vertices v_{1}, v_{2} of G are said to be adjacent in G if v_{1}, v_{2} are connected by an edge (line segment) of G and we write $v_{1}-v_{2}$. A finite sequence of edges from a vertex v_{1} of G to a vertex v_{2} of G is called a path of G and we write $v_{1}-a_{1}-a_{2}-\cdots-a_{k}-v_{2}$, where $k<\infty$ and the $a_{i}, 1 \leq i \leq k$, are some distinct vertices of G. Hence it is clear that every edge of G is a path of G, but not every path of G is an edge of G. We say that G is connected if there is a path between any two distinct vertices of G. At the other extreme, we say that G is totally disconnected if no two vertices of G are adjacent. We denote the complete graph on n vertices by K_{n} (recall that a graph G is called complete if every two vertices of G are adjacent) and the complete bipartite graph on m and n vertices by $K_{m, n}$ (we allow m and n to be infinite cardinals, recall that $K_{m, n}$ is the graph with two sets of vertices, say V_{1}, V_{2} such that $\left|V_{1}\right|=n,\left|V_{2}\right|=m$, $V_{1} \cap V_{2}=\emptyset$, every two vertices in V_{1} are not adjacent, every two vertices in V_{2} are not adjacent, and every vertex in V_{1} is adjacent to every vertex in V_{2}). We will sometimes call a $K_{1, n}$ a star graph. We say that two (induced) subgraphs G_{1} and G_{2} of G are disjoint if G_{1} and G_{2} have no common vertices and no vertex of G_{1} (resp., G_{2}) is adjacent (in G) to any vertex not in G_{1} (resp., G_{2}). A general reference for graph theory is (Bollaboás, 1979).

2. The Structure of $U D(R=A \times A)$ When A Is a Field

Let p be a positive prime number, $n \geq 1$. Then $A=G F\left(p^{n}\right)$ denotes a finite field with p^{n} elements. Let $R=A \times A$. Then $T D(R)$ is not connected by (Badawi, 2015, Theorem 2.1). The first two results give a complete description of the structure of $U D(R)$ and $T D(R)$.

Theorem 2.1. Let $n \geq 1, m=2^{n}-1$ and $R=G F\left(2^{n}\right) \times G F\left(2^{n}\right)$. Then

1. $Z D(R)=\Gamma(R)=K_{m, m}$.
2. $U D(R)$ is the union of one K_{m} and $\left(2^{(n-1)}-1\right)$ disjoint $K_{m, m}$'s.
3. $T D(R)$ is the union of one K_{m} and $2^{(n-1)}$ disjoint $K_{m, m}$'s.

Proof. (1). The result is clear by (Badawi, 2015, Theorem 2.1) and (D. Anderson \& Mulay, 2007, Theorem 2.2).
(2). Let $A=G F\left(2^{n}\right)$. Then $R=A \times A$. Let $v_{1}, v_{2} \in U(R)$. Since R is a vector space over $A, v_{1}=u(1, a) \in R$ and $v_{2}=v(1, b) \in R$ for some $u, v, a, b \in A^{*}$. Hence v_{1} is adjacent to v_{2} if and only if $v_{1} \cdot v_{2}=u v+u v a b=0$ in A if and only if $b=-a^{-1}=a^{-1}$ in A. Thus for each $a \in U(A)=A^{*}$, let $X_{a}=\left\{u(1, a) \mid u \in A^{*}\right\}$ and $Y_{a}=\left\{u\left(1, a^{-1}\right) \mid u \in A^{*}\right\}$. It is clear that $\left|X_{a}\right|=\left|Y_{a}\right|=2^{n}-1$. Let $a=1$. Since $\operatorname{char}(A)=\operatorname{char}(R)=2, X_{a}=Y_{a}$ and the dot product of every two distinct vertices in X_{a} is zero. Thus every two distinct vertices in X_{a} are adjacent. Thus the vertices in X_{a} form the graph K_{m} that is a complete subgraph of $\operatorname{TD}(R)$. Let $a \in U(A)$ such that $a \neq 1$. Since $a^{2} \neq 1$ for each $a \in U(A) \backslash\{1\}$, we have $X_{a} \cap Y_{a}=\emptyset$, every two distinct vertices in X_{a} are not adjacent, and every two distinct vertices in Y_{a} are not adjacent. Since $\operatorname{char}(A)=\operatorname{char}(R)=2$, it is clear that every vertex in X_{a} is adjacent to every vertex in Y_{a}. Thus the vertices in $X_{a} \cup Y_{a}$ form the graph $K_{m, m}$ that is a complete bi-partite subgraph of $T D(R)$. By construction, there are exactly $\left(2^{n}-2\right) / 2=2^{n-1}-1$ disjoint complete bi-partite
$K_{m, m}$ subgraphs of $T D(R)$. Hence $U D(R)$ is the union of one complete subgraph K_{m} and $\left(2^{n-1}-1\right)$ disjoint complete bi-partite $K_{m, m}$ subgraphs.
(3). The claim follows from (1) and (2).

Theorem 2.2. Let $p \geq 3$ be a positive prime integer, $n \geq 1, m=p^{n}-1$, and let $R=G F\left(p^{n}\right) \times G F\left(p^{n}\right)$. Then

1. $Z D(R)=\Gamma(R)=K_{m, m}$.
2. If $4 \nmid m$, then $U D(R)$ is the union of $m / 2$ disjoint $K_{m, m}$'s.
3. If $4 \mid m$, then $U D(R)$ is the union of two K_{m} 's and $(m-2) / 2$ disjoint $K_{m, m}$'s.
4. If $4 \nmid m$, then $T D(R)$ is the union of $(m+2) / 2$ disjoint $K_{m, m}$'s.
5. If $4 \mid m$, then $T D(R)$ is the union of two K_{m} 's and $m / 2$ disjoint $K_{m, m}$'s.

Proof. (1). The result is clear by (Badawi, 2015, Theorem 2.1) and (D. Anderson \& Mulay, 2007, Theorem 2.2).
(2) Let $A=G F\left(p^{n}\right)$. Then $R=A \times A$. Let $v_{1}, v_{2} \in U(R)$. Since R is a vector space over $A, v_{1}=u(1, a) \in R$ and $v_{2}=v(1, b) \in R$ for some $u, v, a, b \in A^{*}$. Hence v_{1} is adjacent to v_{2} if and only if $v_{1} \cdot v_{2}=u v+u v a b=0$ in A if and only if $b=-a^{-1}$ in A. Thus for each $a \in U(A)=A^{*}$, let $X_{a}=\left\{u(1, a) \mid u \in A^{*}\right\}$ and $Y_{a}=\left\{u\left(1, a^{-1}\right) \mid u \in A^{*}\right\}$. Since R is a vector space over A, for each $a \in U(A)=A^{*}$, let $X_{a}=\left\{u(1, a) \mid u \in A^{*}\right\}$ and $Y_{a}=\left\{u\left(1,-a^{-1}\right) \mid u \in A^{*}\right\}$. It is clear that $\left|X_{a}\right|=\left|Y_{a}\right|=m=p^{n}-1$. Since $4 \nmid m, U(A)=A^{*}$ has no elements of order 4. Thus $a^{2} \neq-1$ for each $a \in U(A)$. Hence $X_{a} \cap Y_{a}=\emptyset$, every two distinct vertices in X_{a} are not adjacent, and every two distinct vertices in Y_{a} are not adjacent. By construction of X_{a} and Y_{a}, it is clear that every vertex in X_{a} is adjacent to every vertex in Y_{a}. Thus the vertices in $X_{a} \cup Y_{a}$ form the graph
$K_{m, m}$ that is a complete bi-partite subgraph of $T D(R)$. By construction, there are exactly $m / 2$ disjoint complete bi-partite $K_{m, m}$ subgraphs of $T D(R)$. Hence $U D(R)$ is the union of $m / 2$ disjoint $K_{m, m}$'s.
(3). Note that $|U(A)|=m$. Since $U(A)=A^{*}$ is cyclic and $4 \mid m, U(A)$ has exactly one subgroup of order 4 . Thus $U(A)$ has exactly two elements of order 4, say b, c. Since $a \in U(A)$ is of order 4 if and only if $a^{2}=-1$, it is clear that $x^{2}=-1$ for some $x \in U(A)$ if and only if $x=b, c$. Let $X_{b}=\{u(1, b) \mid u \in U(A)\}$ and let $X_{c}=\{u(1, c) \mid u \in U(A)\}$. It is clear that $\left|X_{b}\right|=\left|X_{c}\right|=m$. Let $H=\{b, c\}$. Then the dot product of every two distinct vertices in X_{h} is zero for each $h \in H$. Thus every two distinct vertices in X_{h} are adjacent for every $h \in H$. Thus for each $h \in H$, the vertices in X_{h} form the graph K_{m} that is a complete subgraph of $T D(R)$. Let $a \in U(A) \backslash H, X_{a}=\left\{u(1, a) \mid u \in A^{*}\right\}$, and $Y_{a}=\left\{u\left(1,-a^{-1}\right) \mid u \in A^{*}\right\}$. It is clear that $\left|X_{a}\right|=|Y a|=m$. Since $a \notin H$, we have $X_{a} \cap Y_{a}=\emptyset$, every two distinct vertices in X_{a} are not adjacent, and every two distinct vertices in Y_{a} are not adjacent. By construction, it is clear that every vertex in X_{a} is adjacent to every vertex in Y_{a}. Thus the vertices in $X_{a} \cup Y_{a}$ form the graph $K_{m, m}$ that is a complete bi-partite subgraph of $T D(R)$. By construction, there are $(m-2) / 2$ disjoint $K_{m, m}$ subgraphs. Hence $U D(R)$ is the union of two K_{m} 's and $(m-2) / 2$ disjoint $K_{m, m}$'s.
(4). The claim follows from (1) and (2).
(5). The claim follows from (1) and (3).

In view of Theorem 2.2, we have the following corollary.

Corollary 2.3. Let $p \geq 3$ be a prime positive integer, and let $R=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Then

1. $Z D(R)=\Gamma(R)=K_{p-1, p-1}$.
2. If $4 \nmid p-1$, then $U D(R)$ is the union of $(p-1) / 2$ disjoint $K_{p-1, p-1}$.
3. If $4 \mid p-1$, then $U D(R)$ is the union of two disjoint K_{p-1} 's and $(p-3) / 2$ disjoint $K_{p-1, p-1}$'s.
4. If $4 \nmid p-1$, then $T D(R)$ is the union of $(p+1) / 2$ disjoint $K_{p-1, p-1}$'s.
5. If $4 \mid p-1$, then $T D(R)$ is the union of two disjoint K_{p-1} 's and $(p-1) / 2$ disjoint $K_{p-1, p-1}$'s.

Example 2.4. Let $A=\frac{Z_{2}[X]}{\left(X^{2}+X+1\right)}$. Then A is a finite field with 4 elements. Let $v=X+\left(X^{2}+X+1\right) \in A$. Since $\left(A^{*},.\right)$ is a cyclic group and $A^{*}=<v>$, we have $A=\left\{0, v, v^{2}, v^{3}=1+\left(X^{2}+X+1\right)\right\}$. Let $R=A \times A$. Then the $U D(R)$ is the union of one K_{3} and one $K_{3,3}$ by Theorem 2.1(1). The following is the graph of $U D(R)$.

Fig. 2.1: The unit dot product graph of the ring $A \times A$, where A is a field with 4 elements

Example 2.5. Let $A=Z_{5}$ and $R=A \times A$. Then the $U D(R)$ is the union of two disjoint K_{4} and one $K_{4,4}$ by Corollary 2.3(3). The following is the graph of $U D(R)$.

Fig. 2.2: The unit dot product graph of the ring $Z_{5} \times Z_{5}$

3. Unit Dot Product Graph of $R=Z_{n} \times Z_{n}$

Let $n>1$ and write $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$, where the p_{i} 's are distinct prime positive integers. Then $U\left(Z_{n}\right)=\{1 \leq a<n \mid \mathrm{a}$ is an integer and $\operatorname{gcd}(a, n)=1\}$. It is known that $U\left(Z_{n}\right)$ is a group under multiplication module n and $\left|U\left(Z_{n}\right)\right|=$ $\phi(n)=\left(p_{1}-1\right) p_{1}^{k_{1}-1}\left(p_{2}-1\right) p_{2}^{k_{2}-1} \cdots\left(p_{m}-1\right) p_{m}^{k_{m}-1}$.

If $n \geq 3$, then it is clear that $\phi(n)$ is an even integer. In the next result, we give an alternative proof of this fact.

Proposition 3.1. Let n be an integer such that $n \geq 3$. Then $\phi(n)$ is an even integer.

Proof. Let $k \in U\left(Z_{n}\right)$. It is clear that $\operatorname{gcd}(n-k, n)=1$ and thus $n-k \in U\left(Z_{n}\right)$. It is also clear that $k, n-k$ are distinct elements in $U\left(Z_{n}\right)$. Thus all numbers in $U\left(Z_{n}\right)$ can be put into pairs. Hence if $n \geq 3$, then $\phi(n)$ is an even integer.

The following lemma is needed.

Lemma 3.2. Let n be a positive integer and write $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where the p_{i} 's are distinct prime positive integers. Then

1. If $4 \mid n$, then $a^{2} \not \equiv n-1(\bmod n)$ for each $a \in U\left(Z_{n}\right)$.
2. If $4 \nmid n$, then $x^{2} \equiv n-1(\bmod n)$ has a solution in $U\left(Z_{n}\right)$ if and only if $4 \mid$ $\left(p_{i}-1\right)$ for each odd prime factor p_{i} of n. Furthermore, if $x^{2} \equiv n-1(\bmod n)$ has a solution in $U\left(Z_{n}\right)$, then it has exactly 2^{r-1} distinct solutions in $U\left(Z_{n}\right)$ if n is even and it has exactly 2^{r} distinct solutions in $U\left(Z_{n}\right)$ if n is odd.

Proof. (1). Suppose that $4 \mid n$. Then $n \geq 4$. Since $4 \nmid(n-2), n-1 \not \equiv 1(\bmod 4)$ and thus $a^{2} \not \equiv n-1(\bmod \mathrm{n})$ for each $a \in U\left(Z_{n}\right)$ by (LeVeque, 1977, Theorem 5.1).
(2). Suppose that $4 \nmid n$. Then $a^{2} \equiv n-1(\bmod n)$ for some $a \in U\left(Z_{n}\right)$ if and only if $a^{2} \equiv n-1\left(\bmod p_{i}\right)$ for each odd prime factor p_{i} of n by (LeVeque, 1977, Theorem 5.1). Thus $a^{2} \equiv n-1(\bmod n)$ for some $a \in U\left(Z_{n}\right)$ if and only if $\left(a \bmod p_{i}\right)^{2} \equiv p_{i}-1\left(\bmod p_{i}\right)$ for each odd prime factor p_{i} of n. Since $U\left(Z_{p_{i}}\right)=$ $Z_{p_{i}}^{*}=\left\{1, \ldots, p_{i}-1\right\}$ for each prime factor p_{i} of n, we have $\left|U\left(Z_{p_{i}}\right)\right|=p_{i}-1$. For each $x \in U\left(Z_{p_{i}}\right), 1 \leq i \leq r$, let $|x|$ denotes the order of x in $U\left(Z_{p_{i}}\right)$. Let p_{i}, $1 \leq i \leq r$, be an odd prime factor of n. Since $\left|p_{i}-1\right|=2$ in $U\left(Z_{p_{i}}\right), b^{2}=p_{i}-1$ in $U\left(Z_{p_{i}}\right)$ for some $b \in U\left(Z_{p_{i}}\right)$ if and only if $|b|=4$ in $U\left(Z_{p_{i}}\right)$. Since $\left|U\left(Z_{p_{i}}\right)\right|=p_{i}-1$, we conclude that $b^{2}=p_{i}-1$ in $U\left(Z_{P_{i}}\right)$ for some $b \in U\left(Z_{p_{i}}\right)$ if and only if $4 \mid\left(p_{i}-1\right)$. Thus $x^{2} \equiv n-1(\bmod \mathrm{n})$ has a solution in $U\left(Z_{n}\right)$ if and only if $4 \mid\left(p_{i}-1\right)$ for each odd prime p_{i} factor of n. Suppose that $x^{2} \equiv n-1(\bmod n)$ has a solution in $U\left(Z_{n}\right)$. We consider two cases:

Case 1. Suppose that n is an even integer. Then there are exactly $r-1$ distinct odd prime factors of n. Since $4 \nmid n, x^{2} \equiv n-1(\bmod n)$ has exactly 2^{r-1} distinct solutions in $U\left(Z_{n}\right)$ by (LeVeque, 1977, Theorem 5.2).

Case 2. Suppose that n is an odd integer. Then there are exactly r distinct odd prime factors of n. Thus $x^{2} \equiv n-1(\bmod n)$ has exactly 2^{r} distinct solutions in $U\left(Z_{n}\right)$ by (LeVeque, 1977, Theorem 5.2).

Let $A=Z_{n}$, where n is not prime. Then $T D(A \times A)$ is connected by (Badawi, 2015, Theorem 2.3). In the following result, we show that $U D(A \times A)$ is disconnected, and we give a complete description of the structure of $U D(A \times A)$.

Theorem 3.3. Let $n \geq 2$ be an integer, $R=Z_{n} \times Z_{n}$ and $\phi(n)=m$. Then

1. If $4 \mid n$, then $U D(R)$ is the union of $m / 2$ disjoint $K_{m, m}$'s.
2. If $4 \nmid n$ and $4 \nmid\left(p_{i}-1\right)$ for at least one of the p_{i} 's in the prime factorization of n, then $U D(R)$ is the union of $m / 2$ disjoint $K_{m, m}$'s.
3. If $4 \nmid n$ and $4 \mid\left(p_{i}-1\right)$ for all the odd p_{i} 's in the prime factorization of n, then we consider the two cases:

Case I. If n is even, then $U D(R)$ is a union of $(m / 2)-2^{r-2}$ disjoint $K_{m, m}$'s and 2^{r-1} disjoint K_{m} 's.

Case II. If n is odd, then $U D(R)$ is a union of $(m / 2)-2^{r-1}$ disjoint $K_{m, m}$'s and 2^{r} disjoint K_{m} 's.

Proof. Let $A=Z_{n}$. Then $R=A \times A$. Note that $U D(R)$ has exactly m^{2} vertices. Let $v_{1}, v_{2} \in U(R)$. Since R is a vector space over $A, v_{1}=u(1, a) \in R$ and $v_{2}=v(1, b) \in R$ for some $u, v, a, b \in U(A)$. Hence v_{1} is adjacent to v_{2} if and only if $v_{1} \cdot v_{2}=u v+u v a b=0$ in A if and only if $b=-a^{-1}$ in A. Thus for each $a \in U(A)$, let $X_{a}=\{u(1, a) \mid u \in U(A)\}$ and $Y_{a}=\left\{u\left(1,-a^{-1}\right) \mid u \in U(A)\right\}$. It is clear that $\left|X_{a}\right|=\left|Y_{a}\right|=m$.
(1). Since $4 \mid n, a^{2} \not \equiv n-1(\bmod n)$ for each $a \in U\left(Z_{n}\right)$ by Lemma 3.2(1). Hence $X_{a} \cap Y_{a}=\emptyset$. It is clear that every two distinct vertices in X_{a} are not adjacent, and every two distinct vertices in Y_{a} are not adjacent. By construction of X_{a} and Y_{a}, it is clear that every vertex in X_{a} is adjacent to every vertex in Y_{a}. Thus the vertices in $X_{a} \cup Y_{a}$ form the graph $K_{m, m}$ that is a complete bi-partite subgraph of $T D(R)$. By construction, there are exactly $m / 2$ disjoint complete bi-partite $K_{m, m}$ subgraphs of $T D(R)$. Hence $U D(R)$ is the union of $m / 2$ disjoint $K_{m, m}$'s.
(2). Write $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where the p_{i} 's are distinct prime positive integers. Since $4 \nmid n$ and $4 \nmid\left(p_{i}-1\right)$ for at least one of the $p_{i}{ }^{\prime} s, a^{2} \not \equiv n-1(\bmod$ n) for each $a \in U\left(Z_{n}\right)$ by Lemma 3.2. Thus by the same argument as in (1), $U D(R)$ is the union of $m / 2$ disjoint $K_{m, m}$'s.
(3). Write $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$, where the p_{i} 's are distinct prime positive integers. Suppose that $4 \nmid n$ and $4 \mid p_{i}-1$ for all the odd p_{i} 's in the prime factorization of n. Let $B=\left\{b \in U\left(Z_{n}\right) \mid b^{2}=n-1\right.$ in $\left.U\left(Z_{n}\right)\right\}$ and $C=\{c \in$
$U\left(Z_{n}\right) \mid c^{2} \neq n-1$ in $\left.U\left(Z_{n}\right)\right\}$. We consider two cases:

Case I. Suppose that n is even. Then $|B|=2^{r-1}$ by Lemma 3.2(2) and hence $|C|=m-2^{r-1}$. For each $a \in B$, we have $X_{a}=Y_{a}$ and hence the dot product of every two distinct vertices in X_{a} is zero. Thus the vertices in X_{a} form the graph K_{m} that is a complete subgraph of $T D(R)$. Hence $U D\left(Z_{n}\right)$ has exactly 2^{r-1} disjoint K_{m}. For each $a \in C$, we have $X_{a} \cap Y_{a}=\emptyset$, every two distinct vertices in X_{a} are not adjacent, and every two distinct vertices in Y_{a} are not adjacent. By construction, it is clear that every vertex in X_{a} is adjacent to every vertex in Y_{a}. Thus the vertices in $X_{a} \cup Y_{a}$ form the graph $K_{m, m}$ that is a complete bi-partite subgraph of $T D(R)$. Thus $U D\left(Z_{n}\right)$ has exactly $\frac{m-2^{r-1}}{2}=\frac{m}{2}-2^{r-2}$ disjoint $K_{m, m}$'s.

Case II. Suppose that n is odd. Then $|B|=2^{r}$ by Lemma 3.2(2) and hence $|C|=m-2^{r}$. For each $a \in B$, we have $X_{a}=Y_{a}$ and hence the dot product of every two distinct vertices in X_{a} is zero. Thus the vertices in X_{a} form the graph K_{m} that is a complete subgraph of $T D(R)$. Hence $U D\left(Z_{n}\right)$ has exactly 2^{r} disjoint K_{m} '. For each $a \in C$, we have $X_{a} \cap Y_{a}=\emptyset$, every two distinct vertices in X_{a} are not adjacent, and every two distinct vertices in Y_{a} are not adjacent. By construction, it is clear that every vertex in X_{a} is adjacent to every vertex in Y_{a}. Thus the vertices in $X_{a} \cup Y_{a}$ form the graph $K_{m, m}$ that is a complete bi-partite subgraph of $T D(R)$. Thus $U D\left(Z_{n}\right)$ has exactly $\frac{m-2^{r}}{2}=\frac{m}{2}-2^{r-1}$ disjoint $K_{m, m}$'s.

Recall that a graph G is called completely disconnected if every two vertices of G are not connected by an edge in G.

Theorem 3.4. Let $n \geq 4$ be an even integer, and let $R=Z_{n} \times Z_{n} \times \ldots . Z_{n}$ (k times), where k is an odd positive integer. Then $U D(R)$ is completely disconnected.

Proof. Let $x=\left(x_{1}, \ldots, x_{k}\right), y=\left(y_{1}, \ldots, y_{k}\right) \in U(R)$. Then $x_{i}, y_{i} \in U\left(Z_{n}\right)$ for every $\mathrm{i}, 1 \leq i \leq k$. Since n is an even integer, x_{i} and y_{i} are odd integers for every i, $1 \leq i \leq k$. Hence, since k is an odd integer, $x_{1} y_{1}+\cdots+x_{k} y_{k}$ is an odd integer,
and thus $x_{1} y_{1}+\cdots+x_{k} y_{k} \neq 0$ in Z_{n}, since n is even. Thus $U D(R)$ is completely disconnected.

Theorem 3.5. Let $n \geq 4$ be an even integer, and let $R=Z_{n} \times Z_{n}$. Then the vertex $(n / 2, n / 2)$ in $Z D(R)$ is adjacent to every vertex in $U D(R)$.

Proof. It is clear that $\left(\frac{n}{2}, \frac{n}{2}\right)$ is a vertex of $Z D(R)$. Let $u \in U\left(Z_{n}\right)$. Since n is even, u is an odd integer. Thus $u-1=2 m$ for some integer m. Hence $\frac{n}{2}(u-1)=\frac{n}{2}(2 m)=m n=0 \in Z_{n}$. Thus $\frac{n}{2} u=\frac{n}{2}$ in Z_{n}. Now let $(a, b) \in U(R)$. Then $a, b \in U\left(Z_{n}\right)$ are odd integers. Hence $(a, b)\left(\frac{n}{2}, \frac{n}{2}\right)=\frac{n}{2}+\frac{n}{2}=n=0 \in Z_{n}$. Thus the vertex $(n / 2, n / 2)$ in $Z D(R)$ is adjacent to every vertex in $U D(R)$.

Example 3.6. Let $A=Z_{8}$ and $R=A \times A$. Then the $U D(R)$ is the union of two disjoint $K_{4,4}$ by Theorem 3.3(1). The following is the graph of $U D(R)$.

Fig. 3.1: The unit dot product graph of the ring $Z_{8} \times Z_{8}$

Example 3.7. Let $A=Z_{10}$ and $R=A \times A$. Then the $U D(R)$ is the union of two disjoint K_{4} and one $K_{4,4}$ by Theorem 3.3(3, case I). The following is the graph of $U D(R)$.

Fig. 3.2: The unit dot product graph of the ring $Z_{10} \times Z_{10}$

4. Subgraphs of the Zero-Divisor Dot Product Graph of

$$
Z_{n} \times Z_{n}
$$

For an integer $n \geq 2$, let $R_{1}=\left\{\left(u_{1}, z_{1}\right) \mid u_{1} \in U\left(Z_{n}\right)\right.$ and $\left.z_{1} \in Z\left(Z_{n}\right)\right\}$ and $R_{2}=\left\{\left(z_{2}, u_{2}\right) \mid u_{2} \in U\left(Z_{n}\right)\right.$ and $\left.z_{2} \in Z\left(Z_{n}\right)\right\}$. It is clear that $R_{1} \subset Z\left(Z_{n} \times Z_{n}\right)$ and $R_{2} \subset Z\left(Z_{n} \times Z_{n}\right)$. In this section, we study the induced subgraph $Z D\left(R_{1} \cup R_{2}\right)$ of $Z D\left(Z_{n} \times Z_{n}\right)$ with vertices $R_{1} \cup R_{2}$.

Theorem 4.1. Let $R=Z_{n} \times Z_{n}$ and $\phi(n)=m$. Then

1. If n is prime, then $Z D\left(R_{1} \cup R_{2}\right)=Z D\left(Z_{n} \times Z_{n}\right)=\Gamma(R)=K_{n-1, n-1}$.
2. If n is not prime, then $Z D\left(R_{1} \cup R_{2}\right)$ is the union of of $(n-m)$ disjoint $K_{m, m}$'s.

Proof. (1). Suppose that n is prime. Then it is clear that $R_{1} \cup R_{2}=Z\left(Z_{n} \times Z_{n}\right)$. If $n=2$, then it is trivial to see that $Z D\left(R_{1} \cup R_{2}\right)=Z D\left(Z_{n} \times Z_{n}\right)=\Gamma(R)=K_{1,1}$. If $n \geq 3$, then the claim is clear by Corollary 2.3(1).
(2). Let $A=Z_{n}$. Suppose that n is not prime. It is clear that every two vertices in R_{i} are not adjacent for every $i \in\{1,2\}$. Let $v_{1} \in R_{1}$ and $v_{2} \in R_{2}$. Then $v_{1}=u(1, a) \in R_{1}$ and $v_{2}=v(b, 1) \in R_{2}$ for some $u, v \in U(A)$ and some $a, b \in Z(A)$. Then v_{1} is adjacent to v_{2} if and only if $v_{1} \cdot v_{2}=u v b+u v a=0$ in A if and only if $b=-a$ in A. Hence for each $a \in Z(A)$, let $X_{a}=\{u(1, a) \mid u \in U(A)\}$ and $Y_{a}=\{u(-a, 1) \mid u \in U(A)\}$. It is clear that $\left|X_{a}\right|=\left|Y_{a}\right|=m$. For each $a \in Z(A), X_{a} \cap Y_{a}=\emptyset$, every two distinct vertices in X_{a} are not adjacent, and every two distinct vertices in Y_{a} are not adjacent. By construction, it is clear that every vertex in X_{a} is adjacent to every vertex in Y_{a}. Thus the vertices in $X_{a} \cup Y_{a}$ form the graph $K_{m, m}$ that is a complete bi-partite subgraph of $Z D(R)$. Since $\left|R_{1}\right|=\left|R_{2}\right|=m(n-m)$ and $R_{1} \cap R_{2}=\emptyset$, we have $\left|R_{1} \cup R_{2}\right|=2 m(n-m)$. Thus $Z D\left(R_{1} \cup R_{2}\right)$ is the union of of $(n-m)$ disjoint $K_{m, m}$'s.

5. Equivalence Dot Product Graph

Let $A=Z_{n}$ and $R=A \times A$. Define a relation \sim on $U(R)$ such that $x \sim y$, where $x, y \in U(R)$, if $x=(c, c) y$ for some $(c, c) \in U(R)$. It is clear that \sim is an equivalence relation on $U(R)$. If S is an equivalence class of $U(R)$, then there is an $a \in U(A)$ such that $S=\left(\overline{(1, a)}=\left\{u(1, a) \mid u \in U\left(Z_{n}\right)\right\}\right.$. Let $E(U(R))$ be the set of all distinct equivalence classes of $U(R)$. We define the equivalence unit dot product graph of $U(R)$ to be the (undirected) graph $E U D(R)$ with vertices $E(U(R)$), and two distinct vertices X and Y are adjacent if and only if $a \cdot b=0 \in A$ for every $a \in X$ and every $b \in Y$ (where $a \cdot b$ denote the normal dot product of a and b). We have the following results.

Theorem 5.1. Let $n \geq 1, m=2^{n}-1$ and $R=G F\left(2^{n}\right) \times G F\left(2^{n}\right)$. Then $E U D(R)$ is the union of one K_{1} and $\left(2^{(n-1)}-1\right)$ disjoint $K_{1,1}$'s.

Proof. Let $A=G F\left(2^{n}\right)$. For each $a \in U(A)$, let X_{a} and Y_{a} be as in the proof of Theorem 2.1. Then $X_{a}, Y_{a} \in E(U(R))$. Since $|X|=m$ for each $X \in E(U(R))$, we conclude that each K_{m} of $U D(R)$ is a K_{1} of $E U D(R)$ and each $K_{m, m}$ of $U D(R)$ is a $K_{1,1}$ of $E U D(R)$. Hence the claim follows by the proof of Theorem 2.1.

Theorem 5.2. Let $p \geq 3$ be a positive prime integer, $n \geq 1, m=p^{n}-1$, and let $R=G F\left(p^{n}\right) \times G F\left(p^{n}\right)$. Then

1. If $4 \nmid m$, then $E U D(R)$ is the union of $m / 2$ disjoint $K_{1,1}$'s.
2. If $4 \mid m$, then $\operatorname{EUD}(R)$ is the union of two disjoint K_{m} 's and $(m-2) / 2$ disjoint $K_{1,1}$'s.

Proof. Let $A=G F\left(p^{n}\right)$. For each $a \in U(A)$, let X_{a} and Y_{a} be as in the proof of Theorem 2.2. Then $X_{a}, Y_{a} \in E(U(R))$. Since $|X|=m$ for each $X \in E(U(R))$, we
conclude each K_{m} of $U D(R)$ is a K_{1} of $E U D(R)$ and each $K_{m, m}$ of $U D(R)$ is a $K_{1,1}$ of $E U D(R)$. Hence the claim follows by the proof of Theorem 2.2.

Theorem 5.3. Let $n \geq 2$ be an integer, $R=Z_{n} \times Z_{n}$ and $\phi(n)=m$. Then

1. If $4 \mid n$, then $\operatorname{EU} D(R)$ is the union of $m / 2$ disjoint $K_{1,1}$'s.
2. If $4 \nmid n$ and $4 \nmid\left(p_{i}-1\right)$ for at least one of the p_{i} 's in the prime factorization of n, then $\operatorname{EU} D(R)$ is the union of $m / 2$ disjoint $K_{1,1}$'s.
3. If $4 \nmid n$ and $4 \mid\left(p_{i}-1\right)$ for all the odd p_{i} 's in the prime factorization of n, then we consider the two cases:

Case I. If n is even, then $E U D(R)$ is a union of $(m / 2)-2^{r-2}$ disjoint $K_{1,1}$'s and 2^{r-1} disjoint K_{1} 's.

Case II. If n is odd, then $E U D(R)$ is a union of $(m / 2)-2^{r-1}$ disjoint $K_{1,1}$'s and 2^{r} disjoint K_{1} 's.

Proof. Let $A=Z_{n}$. For each $a \in U(A)$, let X_{a} and Y_{a} be as in the proof of Theorem 3.3. Then $X_{a}, Y_{a} \in E(U(R))$. Since $|X|=m$ for each $X \in E(U(R))$, we conclude each K_{m} of $U D(R)$ is a K_{1} of $E U D(R)$ and each $K_{m, m}$ of $U D(R)$ is a $K_{1,1}$ of $E U D(R)$. Hence the claim follows by the proof of Theorem 3.3.

Let $R_{1}=\left\{\left(u_{1}, z_{1}\right) \mid u_{1} \in U\left(Z_{n}\right)\right.$ and $\left.z_{1} \in Z\left(Z_{n}\right)\right\}$ and $R_{2}=\left\{\left(z_{2}, u_{2}\right) \mid u_{2} \in\right.$ $U\left(Z_{n}\right)$ and $\left.z_{2} \in Z\left(Z_{n}\right)\right\}$, see section 4. We define a relation \sim on $R_{1} \cup R_{2}$ such that $x \sim y$, where $x, y \in R_{1} \cup R_{2}$, if $x=(c, c) y$ for some $(c, c) \in U\left(Z_{n} \times Z_{n}\right)$. It is clear that \sim is an equivalence relation on $R_{1} \cup R_{2}$. By construction of R_{1} and R_{2}, it is clear that if $x \sim y$ for some $x, y \in R_{1} \cup R_{2}$, then $x, y \in R_{1}$ or $x, y \in R_{2}$. Hence if S is an equivalence class of $R_{1} \cup R_{2}$, then there is an $a \in Z\left(Z_{n}\right)$ such that either $S=\left(\overline{(1, a)}=\left\{u(1, a) \mid u \in U\left(Z_{n}\right)\right\}\right.$ or $S=\overline{(a, 1)}=\left\{u(a, 1) \mid u \in U\left(Z_{n}\right)\right\}$. Let $E\left(R_{1} \cup R_{2}\right)$ be the set of all distinct equivalence classes of $R_{1} \cup R_{2}$. We define the equivalence zero-divisor dot product graph $R_{1} \cup R_{2}$ to be the (undirected) graph
$E Z D\left(R_{1} \cup R_{2}\right)$ with vertices $E\left(R_{1} \cup R_{2}\right)$, and two distinct vertices X and Y are adjacent if and only if $a \cdot b=0 \in A$ for every $a \in X$ and every $b \in Y$ (where $a \cdot b$ denote the normal dot product of a and b). We have the following result.

Theorem 5.4. Let $R=Z_{n} \times Z_{n}$ and $\phi(n)=m$. Then

1. If n is prime, then $E Z D\left(R_{1} \cup R_{2}\right)=K_{1,1}$.
2. If n is not prime, then $E Z D\left(R_{1} \cup R_{2}\right)$ is the union of of $(n-m)$ disjoint $K_{1,1}$'s.

Proof. (1). If n is prime, then $E=\{\overline{(1,0)}, \overline{(0,1)}\}$. Thus $E Z D\left(R_{1} \cup R_{2}\right)=K_{1,1}$.
(2). Suppose that n is not prime, and let $A=Z_{n}$. For each $a \in Z(A)$, let X_{a} and Y_{a} be as in the proof of Theorem 4.1. Then $X_{a}, Y_{a} \in E\left(R_{1} \cup R_{2}\right)$. Since $|X|=m$ for each $X \in E\left(R_{1} \cup R_{2}\right)$, we conclude that each $K_{m, m}$ of $Z D\left(R_{1} \cup R_{2}\right)$ is a $K_{1,1}$ of $E Z D\left(R_{1} \cup R_{2}\right)$. Hence the claim follows by the proof of Theorem 4.1.

Remark 5.5.

1. Let $A=Z_{n}$ and $R=Z_{n} \times Z_{n}$. Since for each $X \in E(U(R))$ there exists an $a \in U(A)$ such that $X=\overline{(1, a)}=\{u(1, a) \mid u \in U(A)\}$, note that we can recover the graph $U D(R)$ from the graph $\operatorname{EU} D(R)$. However, drawing $E U D(R)$ is much simpler than drawing $U D(R)$.
2. Since for each $X \in E\left(R_{1} \cup R_{2}\right)$ there exists an $a \in Z\left(Z_{n}\right)$ such that either $X=\overline{(1, a)}=\left\{u(1, a) \mid u \in U\left(Z_{n}\right)\right\}$ or $X=\overline{(a, 1)}=\{u(a, 1) \mid u \in$ $\left.U\left(Z_{n}\right)\right\}$, note that we can recover the graph $Z D\left(R_{1} \cup R_{2}\right)$ from the graph $E Z D\left(R_{1} \cap R_{2}\right)$. However, drawing $E Z D\left(R_{1} \cup R_{2}\right)$ is much simpler than drawing $Z D\left(R_{1} \cup R_{2}\right)$.

Example 5.6. Let $A=Z_{20}$ and $R=A \times A$. Then the $E U D(R)$ is the union of 4 disjoint $K_{1,1}$ by Theorem 5.3(1), and thus $U D(R)$ is the union of 4 disjoint $K_{8,8}$. The following is the graph of $\operatorname{EUD}(R)$.

Fig. 5.1: The equivalence unit dot product graph of the ring $Z_{20} \times Z_{20}$

Example 5.7. Let $A=Z_{34}$ and $R=A \times A$. Then the $E U D(R)$ is the union of 7 disjoint $K_{1,1}$'s and 2 disjoint K_{1} 's by Theorem 5.3(3, Case I), and thus $U D(R)$ is the union of 7 disjoint $K_{16,16}$ and 2 disjoint K_{8}. The following is the graph of $E U D(R)$.

Fig. 5.2: The equivalence unit dot product graph of the ring $Z_{34} \times Z_{34}$

Correction:

Theorem $6.1(1,2,3)$ and Theorem $6.2(1,2,3)$: The set D is a dominating set and it is minimum in the sense that if F is another dominating set and F is a subset of D, then $D=F$. However, we cannot claim that D is a minimum dominating set. So the given dominating number \gamma need not be true.

Theorem 6.1 (4) and Theorem 6.2 (4): The result is OK here.

6. Domination Numbers of $T D(R), Z D(R)$, and $U D(R)$

See the above note or my comments on the first page

Let G be a graph with V as its set of vertices. We recall that a subset $S \subseteq V$ is called a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality among the dominating sets of G. Let p be a positive prime number, $n \geq 1$. Then recall that $A=G F\left(p^{n}\right)$ denotes a finite field with p^{n} elements.

Theorem 6.1. Let p be a positive prime integer, $n \geq 1, A=G F\left(p^{n}\right)$, and let $R=A \times \cdots \times A(k$ times, where $k<\infty)$. Then

1. $D=\{(1, a, 0, \ldots, 0) \mid a \in A\} \cup\{(0,1,0, \ldots, 0)\}$ is a minimal dominating set of $T D(R)$, and thus $\gamma(T D(R))=p^{n}+1$.
2. If $k=2$, then $D=\{(1,0),(0,1)\}$ is a minimal dominating set of $Z D(R)$, and thus $\gamma(Z D(R))=2$.
3. If $k \geq 3$, then $D=\{(1, a, 0, \ldots, 0) \mid a \in A\} \cup\{(0,1,0, \ldots, 0)\}$ is a minimal dominating set of $Z D(R)$, and thus $\gamma(Z D(R))=p^{n}+1$.
4. If $k=2$, then $D=\{(1, a) \mid a \neq 0\}$ is a minimal dominating set of $U D(R)$, and thus $\gamma(U D(R))=p^{n}-1$.

Proof. (1). Let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a vertex in $T D(R)$. We consider two cases.
Case I. Assume that $x_{2} \neq 0$. Then let $a=-x_{1} x_{2}^{-1}$. Hence $v=(1, a, 0, \ldots, 0)$ is adjacent to x in $T D(R)$.

Case II. Assume $x_{2}=0$. Then $v=(0,1,0 \ldots, 0) \in D$ is adjacent to x in $T D(R)$. This shows that D is a dominating set of $T D(R)$. In order to show it is minimal, let's first remove the vertex $w=(0,1,0 \ldots, 0)$. Then the vertex $v=(1,0,1 \ldots, 1)$ is not in the set D and for every $d=(1, u, 0, \ldots, 0) \in D \backslash\{W\}$, we have $d \cdot v=(1, u, 0, \ldots, 0) \cdot(1,0,1 \ldots, 1)=1 \neq 0$. Thus w cannot be removed
from D. Now assume that the vertex $m=(1, a, 0, \ldots, 0)$ is removed from D. Then $v=(a,-1,0, \ldots, 0) \in T D(R)$, but v is not adjacent to every $d \in D \backslash\{m\}$. Hence D is a minimal dominating set of $T D(R)$ and thus $\gamma(T D(R))=|D|=p^{n}+1$.
(2). If $k=2$, then the set of all non zero zero divisors of R is $Z=\{(0, x) \mid$ $\left.x \in A^{*}\right\} \cup\left\{(y, 0) \mid y \in A^{*}\right\}$. Let v be a vertex in $Z D(R)$ if $v=(0, x)$ then it is connected to $(1,0) \in D$ and if $v=(x, 0)$ then it is connected to $(0,1) \in D$. This shows that D is a dominating set of $Z D(R)$. It is clear that D is in fact a minimal dominating set of $Z D(R)$ and hence $\gamma(Z D(R))=|D|=2$.
(3). Assume that $k \geq 3$, and let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a vertex in $Z D(R)$. Then at least one of the x_{i} 's is zero. (We will use similar argument as in (1)). We consider two cases.

Case I. Assume that $x_{2} \neq 0$. Then let $a=-x_{1} x_{2}^{-1}$. Hence $v=(1, a, 0, \ldots, 0)$ is adjacent to x in $Z D(R)$.

Case II. Assume $x_{2}=0$. Then $v=(0,1,0 \ldots, 0) \in D$ is adjacent to x in $Z D(R)$. This shows that D is a dominating set of $Z D(R)$. In order to show it is minimal, let's first remove the vertex $w=(0,1,0 \ldots, 0)$. Then the vertex $v=(1,0,1 \ldots, 1)$ is not in the set D and for every $d=(1, u, 0, \ldots, 0) \in D \backslash\{W\}$, we have $d \cdot v=(1, u, 0, \ldots, 0) \cdot(1,0,1 \ldots, 1)=1 \neq 0$. Thus w cannot be removed from D. Now assume that the vertex $m=(1, a, 0, \ldots, 0)$ is removed from D . Then $v=(a,-1,0, \ldots, 0) \in T D(R)$, but v is not adjacent to every $d \in D \backslash\{m\}$. Hence D is a minimal dominating set of $Z D(R)$ and thus $\gamma(Z D(R))=|D|=p^{n}+1$.
(4). Let $x=\left(u_{1}, u_{2}\right)$ be a vertex in $U D(R)$ and assume that $x \notin D$. Let $a=-u_{1} u_{2}^{-1}$. Then $\left(u_{1}, u_{2}\right)$ is adjacent to $(1, a) \in D$. Assume that $c=(1, a)$ is removed from D for some $a \neq 0$. Then $(-a, 1)$ is not adjacent to every vertex in $D \backslash\{c\}$. Hence D is a minimal dominating set and thus $\gamma(U D(R))=|D|=$ $p^{n}-1$.

Theorem 6.2. Let $n \geq 4$ be an integer that is not prime, $A=Z_{n}$, and $R=$ $A \times \cdots \times A(k$ times, where $k<\infty)$. Then write $n=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$, where the p_{i} 's, $1 \leq i \leq m$, are distinct prime positive integers, and let $M=\left\{n / p_{i} \mid 1 \leq i \leq m\right\}$. Then

1. $D=\{(1, a, 0, \ldots, 0) \mid a \in A\} \cup\{(0, b, 0, \ldots, 0) \mid b \in M\}$ is a minimal dominating set of $T D(R)$, and thus $\gamma(T D(R))=n+m$.
2. If $k=2$, then $D=\{(0, a) \mid a \in M\} \cup\{(b, 0) \mid b \in M\}$ is a minimal dominating set of $Z D(R)$, and thus $\gamma(Z D(R))=2 m$.
3. If $k \geq 3$, then $D=\{(1, a, 0, \ldots, 0) \mid a \in A\} \cup\{(0, b, 0, \ldots, 0) \mid b \in M\}$ is a minimal dominating set of $Z D(R)$, and thus $\gamma(Z D(R))=n+m$.
4. If $k=2$, then $D=\{(1, a) \mid a \in U(A)\}$ is a minimal dominating set of $U D(R)$, and thus $\gamma(U D(R))=\phi(n)$.

Proof.
(1). Let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a vertex in $T D(R)$. We consider two cases.

Case I. Assume that x_{2} is a unit. Then let $a=-x_{1} x_{2}^{-1}$. Hence $v=$ $(1, a, 0, \ldots, 0)$ is adjacent to x in $T D(R)$.

Case II. Assume x_{2} is a zero-divisor of A. Then $p_{i} \mid x_{2}$ in A for some $p_{i}, 1 \leq$ $i \leq m$. Then $v=\left(0, \frac{n}{p_{i}}, 0, \ldots, 0\right) \in D$ is adjacent to x in $T D(R)$. This shows that D is a dominating set of $T D(R)$. In order to show it is minimal, let's first remove the vertex $w=\left(0, \frac{n}{p_{i}}, 0, \ldots, 0\right)$ from D for some $i, 1 \leq i \leq m$. Then the vertex $v=\left(1, p_{i}, 1, \ldots, 1\right)$ is not in the set D and for every $d=(1, u, 0, \ldots, 0) \in D \backslash\{W\}$, we have $d \cdot v=(1, u, 0, \ldots, 0) \cdot\left(1, p_{i}, 1 \ldots, 1\right)=1+u p_{i} \neq 0$ (for if $1+u p_{i}=0$, then $u p_{i}=-1$ implies $p_{i} \in U(A)$, a contradiction). Thus w cannot be removed from D. Now assume that the vertex $m=(1, a, 0, \ldots, 0)$ is removed from D . Then $v=(a,-1,0, \ldots, 0) \in T D(R)$, but v is not adjacent to every $d \in D \backslash\{m\}$. Hence D is a minimal dominating set of $T D(R)$ and thus $\gamma(T D(R))=|D|=n+m$.
(2). Let $x=\left(x_{1}, x_{2}\right)$ be a vertex in $Z D(R)$. Then $x_{1} \in Z(A)$ or $x_{2} \in Z(A)$. Assume that $x_{1} \in Z(A)$. Hence $p_{i} \mid x_{1}$ in A for some $i, 1 \leq i \leq m$. Hence x is adjacent to $\left(\frac{n}{p_{i}}, 0\right) \in D$. Assume that $x_{2} \in Z(A)$. Hence $p_{i} \mid x_{2}$ in A for some $i, 1 \leq i \leq m$. Hence x is adjacent to $\left(0, \frac{n}{p_{i}}\right) \in D$. In order to show that D is minimal, let's first remove the vertex $w=\left(\frac{n}{p_{i}}, 0\right)$ from D for some $i, 1 \leq i \leq m$. Then $w=\left(p_{i}, 1\right)$ is a vertex of $Z D(R)$ and it is not adjacent to every vertex in $D \backslash\{w\}$. Assume that $m=\left(0, \frac{n}{p_{i}}\right)$ is removed from D for some $i, 1 \leq i \leq m$. Then $\left(1, \frac{n}{p_{i}}\right)$ is not adjacent to every vertex in $D \backslash\{m\}$. Thus D is a minimal dominating set and hence $\gamma(Z D(R))=2 m$.
(3). Suppose that $k \geq 3$, and let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a vertex in $Z D(R)$. Then at least one of the x_{i} 's is a zero-divisor of A. We consider two cases.

Case I. Assume that x_{2} is a unit. Then let $a=-x_{1} x_{2}^{-1}$. Hence $v=$ $(1, a, 0, \ldots, 0)$ is adjacent to x in $Z D(R)$.

Case II. Assume x_{2} is a zero-divisor of A. Then $p_{i} \mid x_{2}$ in A for some $p_{i}, 1 \leq$ $i \leq m$. Then $v=\left(0, \frac{n}{p_{i}}, 0, \ldots, 0\right) \in D$ is adjacent to x in $Z D(R)$. This shows that D is a dominating set of $Z D(R)$. In order to show it is minimal, let's first remove the vertex $w=\left(0, \frac{n}{p_{i}}, 0, \ldots, 0\right)$ from D for some $i, 1 \leq i \leq m$. Then the vertex $v=\left(1, p_{i}, 1, \ldots, 1\right)$ is not in the set D and for every $d=(1, u, 0, \ldots, 0) \in D \backslash\{W\}$, we have $d \cdot v=(1, u, 0, \ldots, 0) \cdot\left(1, p_{i}, 1 \ldots, 1\right)=1+u p_{i} \neq 0$ (for if $1+u p_{i}=0$, then $u p_{i}=-1$ implies $p_{i} \in U(A)$, a contradiction). Thus w cannot be removed from D. Now assume that the vertex $m=(1, a, 0, \ldots, 0)$ is removed from D . Then $v=(a,-1,0, \ldots, 0) \in T D(R)$, but v is not adjacent to every $d \in D \backslash\{m\}$. Hence D is a minimal dominating set of $Z D(R)$ and thus $\gamma(Z D(R))=|D|=n+m$.
(4). Let $x=\left(u_{1}, u_{2}\right)$ be a vertex in $U D(R)$. Let $x=\left(u_{1}, u_{2}\right)$ be a vertex in $U D(R)$ and assume that $x \notin D$. Let $a=-u_{1} u_{2}^{-1}$. Then $\left(u_{1}, u_{2}\right)$ is adjacent
to $(1, a) \in D$. Assume that $c=(1, a)$ is removed from D for some $a \in U(A)$. Then $(-a, 1)$ is not adjacent to every vertex in $D \backslash\{c\}$. Hence D is a minimal dominating set and thus $\gamma(U D(R))=|D|=\phi(n)$.

7. Conclusion and Future Work

In this thesis, we studied the unit dot product graph, the zero dot product graph and the total dot product graph of $Z_{n} \times Z_{n}$. We introduced a complete description of the structure of these graphs depending on the properties of the ring Z_{n}.We started with the case where n is a prime number, then we studied the more general case where n is any positive integer. We proved that the structure of these graphs will vary depending on n. When we wanted to draw the unit dot product graph of $Z_{n} \times Z_{n}$ where n is a large positive integer, It was useful to use the equivalence dot product graph whose set of vertices are equivalence classes.In chapter 5 , we defined this new graph and introduced a description of its structure. In chapter 6, we determined the domination numbers of the unit dot product graph, zero dot product graph and total dot product graph for different values of n. In our future work, we are looking forward to generalizing our new theories to the case $R \times R$ where R is any finite commutative ring using the new results and theories we proved in this thesis.

References

Abbasi, A., \& Habib, S. (July 2001). The total graph of a commutative ring with respect to proper ideals. New York: Springer.
Afkhami, M., Khashyarmanesh, K., \& Sakhdari, S. M. (2015). The annihilator graph of a commutative semigroup. J. Algebra Appl.14, 1550015.
Akbari, S., Aryapoor, M., \& Jamaali, M. (2012). Chromatic number and clique number of subgraphs of regular graph of matrix algebras (Vol. 436). Linear Algebra Appl.
Akbari, S., Jamaali, M., \& Seyed Fakhari, S. (2009). The clique numbers of regular graphs of matrix algebras are finite (Vol. 43). Linear Algebra Appl.
Akbari, S., Kiani, D., Mohammadi, F., \& Moradi, S. (2009). The total graph and regular graph of a commutative ring (Vol. 213). J. Pure Appl. Algebra.
Akbari, S., Maimani, H. R., \& Yassemi, S. (2003). When a zero-divisor graph is planar or a complete r-partite graph (Vol. 270). J. Algebra.
Anderson, D., Axtell, M., \& Stickles, J. (2010). Zero-divisor graphs in commutative rings. in : Fontana, m., kabbaj, s.e., olberding, b., swanson, i. (eds.) commutative algebra noetherian and non-noetherian perspectives. New York: Springer-Verlag.
Anderson, D., \& Badawi, A. (2008a). On the zero-divisor graph of a ring. Comm. Algebra, 36, 3073-3092.
Anderson, D., \& Badawi, A. (2008b). The total graph of a commutative ring (Vol. 320). United States of America: J. Algebra.
Anderson, D., \& Badawi, A. (2012). The total graph of a commutative ring without the zero element. J. Algebra Appl, 11, 1250074.
Anderson, D., \& Badawi, A. (2013). The generalized total graph of a commutative ring. J. Algebra Appl.
Anderson, D., Fasteen, J., \& LaGrange, J. (2012). The subgroup graph of a group (Vol. 1). Arab. J. Math.
Anderson, D., \& Mulay, S. (2007). On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra, 210, 543-550.
Anderson, D. D., \& Naseer, M. (1993). Beck's coloring of a commutative ring (Vol. 159). J. Algebra.
Atani, S., \& Habibi, S. (2011). The total torsion element graph of a module over a commutative ring. An. Stiint. Univ.'Ovidius Constanta Ser. Mat., 19, 23-34.
Axtel, M., Coykendall, J., \& Stickles, J. (2005). Zero-divisor graphs of polynomials and power series over commutative rings. Comm.Algebra 33, 2043-2050.
Axtel, M., \& Stickles, J. (2006). Zero-divisor graphs of idealizations. J. Pure Appl. Algebra, 204, 235-243.
Badawi, A. (2014). On the annihilator graph of a commutative ring. Comm. Algebra, 42, 108-121.
Badawi, A. (2015). on the dot product graph of a commutative ring (Vol. 43). Comm. Algebra.

Barati, Z., Khashyarmanesh, K., Mohammadi, F., \& Nafar, K. (2012). On the associated graphs to a commutative ring. J. Algebra Appl..
Beck, I. (1988). Coloring of commutative rings. J. Algebra, 116, 208-226.
Bollaboás, B. (1979). Graph theory, an introductory course. New York: SpringerVerlag.
Chelvam, T., \& Asir, T. (2011). Domination in total graph on \mathbb{Z}_{n}. discrete math. Algorithms Appl., 3, 413-421.
Chelvam, T., \& Asir, T. (2012). Intersection graph of gamma sets in the total graph. Discuss. Math. Graph Theory, 32, 339-354.
Chelvam, T., \& Asir, T. (2013a). The intersection graph of gamma sets in the total graph ii. J. Algebra Appl.
Chelvam, T., \& Asir, T. (2013b). On the genus of the total graph of a commutative ring (Vol. 41). Comm. Algebra.
Chelvam, T., \& Asir, T. (2013c). On the total graph and its complement of a commutative ring. Comm. Algebra.
Chiang-Hsieh, H.-J., Smith, N. O., \& Wang, H.-J. (2010). Commutative rings with toroidal zerodivisor graphs. Houston J Math., 36, 1-31.
DeMeyer, L., Greve, L., Sabbaghi, A., \& Wang, J. (2010). The zero-divisor graph associated to a semigroup. Comm. Algebra, 38, 3370-3391.
D.F., A., \& Livingston, P. (1999). The zero-divisor graph of a commutative ring (Vol. 217). J. Algebra.
Khashyarmanesh, K., \& Khorsandi, M. (2012). A generalization of the unit and unitary cayley graphs of a commutative ring. Acta Math. Hungar., 137, 242-253.
LeVeque, W. L. (1977). Fundamentals of number theory. Massachusetts: AddisonWesley Publishing Company, Reading.
Maimani, H., Pouranki, M., Tehranian, A., \& Yassemi, S. (2011). Graphs attached to rings revisited. Arab. J. Sci. Eng., 36, 997-1011.
Maimani, H., Wickham, C., \& Yassemi, S. (2012). Rings whose total graphs have genus at most one. Rocky Mountain J. Math., 42, 1551-1560.
Maimani, H. R., Pournaki, M. R., \& Yassemi, S. (2006). Zero-divisor graph with respect to an ideal. Comm. Algebra, 34, 923-929.
Pucanović, Z., \& Petrović, Z. (2011). On the radius and the relation between the total graph of a commutative ring and its extensions. Publ. Inst. Math.(Beograd)(N.S.), 89, 1-9.
Shekarriz, M., Shiradareh Haghighi, M., \& Sharif, H. (2012). On the total graph of a finite commutative ring. Comm. Algebra, 40, 2798-2807.
Smith, N. O. (2007). Planar zero-divisor graphs. Comm. Algebra, 35, 171-180.
Visweswaran, S., \& Patel, H. D. (2014). A graph associated with the set of all nonzero annihilating ideals of a commutative ring, discrete math [22 pages]. Algorithm. Appl. 06, 1450047.
Wickham, C. (2008). Classification of rings with genus one zero-divisor graphs. Comm. Algebra, 36, 325-345.

Vita

Mohammad Ahmad Abdulla was born in 1985. He has done his bachelor in communication engineering in Tishreen University. He began his master's degree in American University of Sharjah in 2013. He expects to graduate in spring 2016.

[^0]: Dr. Khaled Assaleh
 Interim Vice Provost for Research and Graduate Studies

